Research on the applications of new techniques such as machine learning is advancing rapidly. Machine learning methods are being employed to predict the characteristics of various kinds of concrete such as conventional concrete, recycled aggregate concrete, geopolymer concrete, fiber-reinforced concrete, etc. In this study, a scientometric-based review on machine learning applications for concrete was performed in order to evaluate the crucial characteristics of the literature. Typical review studies are limited in their capacity to link divergent portions of the literature systematically and precisely. Knowledge mapping, co-citation, and co-occurrence are among the most challenging aspects of innovative studies. The Scopus database was chosen for searching for and retrieving the data required to achieve the study’s aims. During the data analysis, the relevant sources of publications, relevant keywords, productive writers based on publications and citations, top articles based on citations received, and regions actively engaged in research into machine learning applications for concrete were identified. The citation, bibliographic, abstract, keyword, funding, and other data from 1367 relevant documents were retrieved and analyzed using the VOSviewer software tool. The application of machine learning in the construction sector will be advantageous in terms of economy, time-saving, and reduced requirement for effort. This study can aid researchers in building joint endeavors and exchanging innovative ideas and methods, due to the statistical and graphical portrayal of participating authors and countries.