2014),"Modeling of underwater wet welding process based on visual and arc sensor", If you would like to write for this, or any other Emerald publication, then please use our Emerald for Authors service information about how to choose which publication to write for and submission guidelines are available for all. Please visit www.emeraldinsight.com/authors for more information.
About Emerald www.emeraldinsight.comEmerald is a global publisher linking research and practice to the benefit of society. The company manages a portfolio of more than 290 journals and over 2,350 books and book series volumes, as well as providing an extensive range of online products and additional customer resources and services.Emerald is both COUNTER 4 and TRANSFER compliant. The organization is a partner of the Committee on Publication Ethics (COPE) and also works with Portico and the LOCKSS initiative for digital archive preservation.
AbstractPurpose -The purpose of this paper is to design the localization and tracking algorithms for our mobile welding robot to carry out the large steel structure welding operations in industrial environment. Design/methodology/approach -Extended Kalman filter, considering the bicycle-modeled robot, is adopted in the localization algorithm. The position and orientation of our mobile welding robot is estimated using the feedback of the laser sensor and the robot motion commands history. A backstepping variable is involved in the tracking algorithm. By introducing a specifically selected Lyapunov function, we proved the tracking algorithm using Barbalat Lemma, which leads the errors of estimated robot states to converge to zero. Findings -The experiments show that the proposed localization method is fast and accurate and the tracking algorithm is robust to track straight lines, circles and other typical industrial curve shapes. The proposed localization and tracking algorithm could be used, but not limited to the mobile welding. Originality/value -Localization problem which is neglected in previous research is very important in mobile welding. The proposed localization algorithm could estimate the robot states timely and accurately, and no additional sensors are needed. Furthermore, using the estimated robot states, we proposed and proved a tracking algorithm for bicycle-modeled mobile robots which could be used in welding as well as other industrial operation scenarios.