Optically pumped lasers that use metastable excited states of Ar have been demonstrated using both pulsed and CW excitation. In terms of Paschen labeling of the states of Ar, the laser system uses excitation of the 2p9-1s5 transition, and lases on the 2p10-1s5 line. Collisional transfer of population from 2p9 to 2p10 is achieved using He as the buffer gas. For the purpose of modeling and developing this laser, rate constants for state-to-state transfer in Ar(2p(i))+Ar/He mixtures are needed. As the 2p10 level can radiate down to 1s4, this lower level also plays a significant role in the laser kinetics. Consequently, rate constants for the relaxation of 1s4 by Ar and He are also required. In the present study we have used pulsed laser excitation techniques to measure rate constants of relevance to the optically pumped metastable Ar laser.