Aqueous chromium(II) ions reduce a macrocyclic Rh(III) complex L(1)(H(2)O)(2)Rh(3+) (L(1) = 1,4,8,11-tetraazacyclotetradecane) to the hydride L(1)(H(2)O)RhH(2+) in two discrete, one-electron steps. The first step generates L(1)(H(2)O)Rh(2+) with kinetics that are first order in each rhodium(III) complex and Cr(H(2)O)(6)(2+), and inverse in [H(+)], k/M(-1) s(-1) = 0.065/(0.0031 + [H(+)]). Further reduction of L(1)(H(2)O)Rh(2+) to L(1)(H(2)O)RhH(2+) is kinetically independent of [H(+)], k/M(-1) s(-1) = 0.30. The difference in [H(+)] dependence allows relative rates of the two steps to be manipulated to generate either L(1)(H(2)O)Rh(2+) or L(1)(H(2)O)RhH(2+) as the final product.