Abstract:The coagulation properties of cellulose from cellulose//NaOH/thiourea/ urea/H 2 O solutions were investigated with the goal of determining the optimal coagulation conditions for the spinning of cellulose fibers. The present study was concentrated on the effect of the coagulation variables upon the coagulation process. It was observed that at the start of the process, the thickness of the solidified layer ε was proportional to the square root of time. Model experiments were performed on gelled solutions of cellulose/NaOH/thiourea/urea/H 2 O in a coagulation bath to determine the coagulation rate, t / , and mass transfer rate difference between the solvent and the coagulant, k . The influence of coagulant compositions, coagulation time and temperature, and cellulose concentrations on coagulation rate and mass transfer rate difference performed on cellulose samples had been demonstrated by microscopic observations, which was important for understanding and controlling the process of cellulose shaping from NaOH/thiourea/urea/H 2 O solutions. The data were analyzed by means of the diffusion model based on Fick's law, thereby depicting the mechanism of the coagulation process, which could be described as a two-phase separation, namely a cellulose-rich phase in the coagulated layer and a cellulose-poor phase in uncoagulated layer.