The behaviour of helium impurities inside metals has been well studied in the last 30 years, however, little attention has been devoted to helium atoms inside liquid metals. Here we have investigated the nucleation and coalescence processes of helium atoms inside liquid eutectic lithium–lead alloys using atomistic simulations. Several key findings regarding He bubbles inside liquid PbLi eutectic are presented. The radius versus the number of atoms has been calculated in the temperature range 600–1000 K. The trend can be fitted and likely extrapolated to larger bubbles (micrometer size). The value of thermal expansion of He bubbles is given as well and compared to the thermal expansion of bulk He. The pressure inside He bubbles has been calculated as a function of bubble size. Finally, the importance of accurate interatomic potentials for the He–metal interaction is discussed.