ABSTRACT:The toughening of glass fiber reinforced nylon-6,6 (PA-6,6) by using the functionalized triblock copolymer styrene-(ethylene-co-butylene)-styrene, grafted with maleic anhydride (SEBS-g-MA) was examined. Blends containing 2.5, 5, 7.5, 10, and 12.5 wt% copolymer were prepared by melt blending in a single-screw extruder. Emphasis was given to the study of mechanical properties in comparison with morphology and thermal properties of the aforementioned samples. Although the amount of SEBS-g-MA that was added in PA-6,6 was not enough to produce a super-tough material, a significant increase in the resistance to crack propagation and impact strength was observed in all blends. This behavior was proportional to the amount of SEBS-g-MA that was added for samples having up to 10%, rubber, while additional amounts seem to have no further effect. A small decrease in tensile strength was also observed. From FTIR spectroscopy and DSC analysis it was shown that the grafting extent of SEBS-g-MA to PA-6,6 was very low.