2022
DOI: 10.47080/simika.v5i2.2185
|View full text |Cite
|
Sign up to set email alerts
|

Klasifikasi Status Gizi Bayi Posyandu Kecamatan Bangun Purba Menggunakan Algoritma Support Vector Machine (Svm)

Abstract: This research was conducted to apply the Support Vector Machine algorithm in the process of classifying the nutritional status of infants under five. The nutritional status of early childhood can determine what kind of human resources as successors of a nation in the future. Good nutritional status plays an important role in determining the success or failure of efforts to increase human resources, so that data on the nutritional status of toddlers such as at the Posyandu, Bangun Purba District can be classifi… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
4

Relationship

0
4

Authors

Journals

citations
Cited by 4 publications
(4 citation statements)
references
References 6 publications
0
3
0
1
Order By: Relevance
“…With in-depth training the SVM classifier then creates emerging values or patterns that are used in the SVM testing process to characterize data sentiment. To obtain the optimal hyperplane line to separate data from the two classes, the hyperplane limit calculation is used and the maximum point is sought (Khotimah et al, 2022;Ramon et al, 2022). How to get a hyperplane with a support vector machine using the equation:…”
Section: Support Vector Machinementioning
confidence: 99%
“…With in-depth training the SVM classifier then creates emerging values or patterns that are used in the SVM testing process to characterize data sentiment. To obtain the optimal hyperplane line to separate data from the two classes, the hyperplane limit calculation is used and the maximum point is sought (Khotimah et al, 2022;Ramon et al, 2022). How to get a hyperplane with a support vector machine using the equation:…”
Section: Support Vector Machinementioning
confidence: 99%
“…Penelitian ini akan menggunakan algoritma Naïve Bayes Classification dalam melakukan classification karena tingkat akurasi dan MAPE yang dihasilkan oleh Naïve Bayes Classifier umumnya lebih tinggi bila dibandingkan dengan KNN [4], selain itu juga Naïve Bayes Classifier memiliki performa recall terbaik bila dibandingkan dengan Decision Tree dan KNN [5]. Selain menggunakan Naïve Bayes Classification, penentuan status gizi balita juga pernah dilakukan dengan menggunakan algoritma decision tree dengan kriteria berat badan menurut umur (BB/U) dengan akurasi 98,86% [6], KNN melalui feature selection backward elimination dengan atribut identitas balita, BB/TB, z-score dari masing-masing nilai indeks Antropometrinya dan indeksasi binary stunting dan tidak stunting dengan akurasi yang dihasilkan sebesar 92,20% [7], algoritma C4.5 melalui pendekatan indeks BB/TB dengan akurasi sebesar 90% [8], serta algoritma SVM dengan kriteria yang digunakan adalah identitas balita, data posyandu, dan indeks Antropometri dengan akurasi yang dihasilkan sebesar 87% [9].…”
Section: Pendahuluanunclassified
“…Several ML methods are used to classify/predict malnutrition or nutritional status in toddlers, including the naïve Bayes (NB) method [3][4][5][6], logistic regression [7], k-nearest neighbor (kNN) [4,5,8], decision tree (DT) [6,[9][10][11], support vector machine (SVM) [12], and learning vector quantization [13]. Several studies compare several ML methods to classify malnutrition in toddlers [4,[14][15][16][17][18][19].…”
Section: Introductionmentioning
confidence: 99%