In recent years, control of nonlinear complex predator–prey systems has attracted the attention of many researchers. The previous works have some weaknesses such as neglecting the consideration of the effects of both model uncertainties and unknown parameters and having an infinite time of convergence. To overcome the mentioned shortages, this article solves the problem of robust control of nonlinear complex Holling type II predator–prey system in a given finite time. It is assumed that the parameters of the system are fully unknown in advance and some uncertainties perturb the system's dynamics. To tackle the system unknown parameters, some adaptation laws are introduced. Thereafter, a robust switching controller is proposed to finite‐timely stabilize the predator–prey system. An illustrative example demonstrates the efficiency and usefulness of the proposed control strategy. © 2015 Wiley Periodicals, Inc. Complexity 21: 260–266, 2016