We give an algebraic quantization, in the sense of quantum groups, of the complex Minkowski space, and we examine the real forms corresponding to the signatures (3, 1), (2, 2), (4, 0), constructing the corresponding quantum metrics and providing an explicit presentation of the quantized coordinate algebras. In particular, we focus on the Kleinian signature (2, 2). The quantizations of the complex and real spaces come together with a coaction of the quantizations of the respective symmetry groups. We also extend such quantizations to the N = 1 supersetting.