Centronuclear myopathy (CNM) is a congenital neuromuscular disorder caused by pathogenic variation in genes associated with membrane trafficking and excitation-contraction coupling (ECC). Bi-allelic autosomal recessive mutations in striated muscle enriched protein kinase (SPEG) account for a subset of CNM patients. Previous research has been limited by the perinatal lethality of Speg knockout mice. Thus, the precise biological role of SPEG in skeletal muscle remains unknown. To address this issue, we generated zebrafish spega, spegb, and spega/spegb (speg-DKO) mutant lines. We demonstrate that speg-DKO zebrafish faithfully recapitulate multiple phenotypes associated with human CNM, including disruption of the ECC protein machinery, dysregulation of calcium homeostasis during ECC, and impairment of muscle performance. Taking advantage of the availability of zebrafish models of multiple CNM genetic subtypes, we compared novel and known disease markers in speg-DKO with mtm1-KO and DNM2-S619L transgenic zebrafish. We observed desmin (DES) accumulation common to all CNM subtypes, and Dnm2 upregulation in muscle of both speg-DKO and mtm1-KO zebrafish. In all, we establish a new model of SPEG-related CNM, and identify abnormalities in this model suitable for defining disease pathomechanisms and evaluating potential therapies.