In this work, the exponential approximation is used for the numerical simulation of a nonlinear SITR model as a system of differential equations that shows the dynamics of the new coronavirus . The SITR mathematical model is divided into four classes using fractal parameters for COVID-19 dynamics, namely, susceptible (S), infected (I), treatment (T), and recovered (R). The main idea of the presented method is based on the matrix representations of the exponential functions and their derivatives using collocation points. To indicate the usefulness of this method, we employ it in some cases. For error analysis of the method, the residual of the solutions is reviewed. The reported examples show that the method is reasonably efficient and accurate.