In this research article, we introduced an algorithm to evaluate COVID-19 patients admission in hospitals at source shortage period. Many researchers have expressed their conclusions from different perspectives on various factors such as spatial changes, climate risks, preparedness, blood type, age and comorbidities that may be contributing to COVID-19 mortality rate. However, as the number of people coming to the hospital for COVID-19 treatment increases, the mortality rate is likely to increase due to the lack of medical facilities. In order to provide medical assistance in this situation, we need to consider not only the extent of the disease impact, but also other important factors. No method has yet been proposed to calculate the priority of patients taking into account all the factors. We have provided a solution to this in this research article. Based on eight key factors, we provide a way to determine priorities. In order to achieve the effectiveness and practicability of the proposed method, we studied individuals with different results on all factors. The sigmoid function helps to easily construct factors at different levels. In addition, the cobweb solution model allows us to see the potential of our proposed algorithm very clearly. Using the method we introduced, it is easier to sort high-risk individuals to low-risk individuals. This will make it easier to deal with problems that arise when the number of patients in hospitals continues to increase. It can reduce the mortality of COVID-19 patients. Medical professionals can be very helpful in making the best decisions.
In this research article, we have introduced a knowledge-based approach to regional/national security measures. Proposed Knowledge-based Normative Safety Measure algorithm for safety measures helps to take practical actions to conquer COVID-19. We analyzed based on five dimensions: the correlation between detected cases and confirmed cases, social distance, the speed of detected cases, the correlation between imported cases and inbound cases, and the proportion of masks worn. It prompts actions based on the security level of the region. Through the use of our proposed algorithm, the government has accelerated the implementation of social distancing, accelerated test cases, and policies, etc., to prevent people from contracting COVID-19. This idea can be a very effective way to realize the impending danger and take action in advance. Help speed up the process of controlling the COVID-19. In pandemic times, it can be helpful to understand better. Holding the normative safety measure at a high level leads nations to perform excellently on triple T’s (testing, tracking, and treatment) policy and other safety acts. The proposed NSM approach facilitates for improve the governance of cities and communities.
As the quantity of garbage created every day rises, solid waste management has become the world's most important issue. As a result, improper solid waste disposal and major sanitary issues develop, which are only detected after they have become dangerous. Due to the system's lockdown during the COVID-19 pandemic, this scenario became much more uncertain. We are at the stage to develop and execute effective waste management procedures, as well as long-term policies and forward-thinking programmes that can work even in the most adverse of scenarios. We incorporate major solid waste (organic and inorganic solid wastes) approaches that actually perform well in normal cases by reducing waste and environmental disasters; however, in such an uncertain scenario like the COVID-19 pandemic, the project automatically allows for a larger number of criteria, all of which are dealt with using fuzzy Multi-Criteria Group Decision Making (MCGDM) methods. The ELECTRE III (ELimination Et Choice Translating REality-III) approach, which is a novel decision-making strategy for determining the best way to dispose and reduce garbage by combining traditional ELECTRE III with an interval-valued q-rung orthopair fuzzy set (IVq-ROFS), is described in detail in this article. To confirm the efficacy of the recommended model, a numerical explanation is provided, as well as sensitivity and comparative analyses. Obviously, the findings encourage decision-makers in authorities to deliberate about the proposals before creating solid waste management policies.
The probabilistic hesitant elements (PHFEs) are a beneficial augmentation to the hesitant fuzzy element (HFE), which is intended to give decision-makers more flexibility in expressing their biases while using hesitant fuzzy information. To extrapolate a more accurate interpretation of the decision documentation, it is sufficient to standardize the organization of the elements in PHFEs without introducing fictional elements. Several processes for unifying and arranging components in PHFEs have been proposed so far, but most of them result in various disadvantages that are critically explored in this paper. The primary objective of this research is to recommend a PHFE unification procedure that avoids the deficiencies of operational practices while maintaining the inherent properties of PHFE probabilities. The prevailing study advances the hypothesis of permutation on PHFEs by suggesting a new sort of PHFS division and subtraction compared with the existing unification procedure. Eventually, the proposed PHFE-unification process will be used in this study, an innovative PHFEs based on the Weighted Aggregated Sum Product Assessment Method–Analytic Hierarchy Process (WASPAS–AHP) perspective for selecting flexible packaging bags after the prohibition on single-use plastics. As a result, we have included the PHFEs-WASPAS in our selection of the most effective fuzzy environment for bio-plastic bags. The ranking results for the suggested PHFEs-MCDM techniques surpassed the existing AHP methods in the research study by providing the best solution. Our solutions offer the best bio-plastic bag alternative strategy for mitigating environmental impacts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.