2016
DOI: 10.17485/ijst/2016/v9i4/82902
|View full text |Cite
|
Sign up to set email alerts
|

Knowledge Discovery in Databases (KDD) as Tools for Developing Customer Relationship Management as External Uncertain Environment: A Case Study with Reference to State Bank of India

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1

Citation Types

0
3
0
1

Year Published

2020
2020
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(4 citation statements)
references
References 17 publications
0
3
0
1
Order By: Relevance
“…Knowledge Discovery in Database (KDD) adalah proses mencari informasi yang berguna dari basis data besar menggunakan algoritma data mining dengan ukuran dan threshold yang ditentukan [13]. Hasil yang diperoleh dari proses ini digunakan sebagai knowledge base yang bertujuan untuk pengambilan keputusan.…”
Section: Knowledge Discovery In Database (Kdd)unclassified
“…Knowledge Discovery in Database (KDD) adalah proses mencari informasi yang berguna dari basis data besar menggunakan algoritma data mining dengan ukuran dan threshold yang ditentukan [13]. Hasil yang diperoleh dari proses ini digunakan sebagai knowledge base yang bertujuan untuk pengambilan keputusan.…”
Section: Knowledge Discovery In Database (Kdd)unclassified
“…In the context of competing bankers who are practically performing with almost homogenous services, the customers of one bank are left with manifold options to switch over to other banks in search of better services. The banks have to perform their banking operations with the likelihood risk of the customer switching over at any given point of time which might result in a decline in revenue (Dash, Pattnaik & Rath, 2016). In order to stop or minimize this possibility of customer refraction; bankers have to come out with customer-centric strategic decision.…”
Section: Importance Of the Research Problemmentioning
confidence: 99%
“…KDD refers to the extensive process of discovering knowledge in data with the application of DM methods such as statistics, machine learning, artificial intelligence, and data visualisation [14]. In overall, the KDD consists a total of nine steps, which are both iterative and interactive in essence [42].…”
Section: Kddmentioning
confidence: 99%
“…Interactive, on the other hand, refers to the end user being able to be involved in each step. The KDD steps involved include (1) Establishing the application domain (2) Building a target data set (3) Data cleaning and pre-processing (4) Data transformation (5) Selecting the suitable DM task [50] Selecting the DM algorithm (7) Applying the DM algorithm (8) Evaluation and interpretation of mined data (9) Consolidation of newly created knowledge [14].…”
Section: Kddmentioning
confidence: 99%