A hyperspectral image (HSI) contains many narrow spectral channels, thus containing efficient information in the spectral domain. However, high spectral resolution usually leads to lower spatial resolution as a result of the limitations of sensors. Hyperspectral super-resolution aims to fuse a low spatial resolution HSI with a conventional high spatial resolution image, producing an HSI with high resolution in both the spectral and spatial dimensions. In this paper, we propose a spatial group sparsity regularization unmixing-based method for hyperspectral super-resolution. The hyperspectral image (HSI) is pre-clustered using an improved Simple Linear Iterative Clustering (SLIC) superpixel algorithm to make full use of the spatial information. A robust sparse hyperspectral unmixing method is then used to unmix the input images. Then, the endmembers extracted from the HSI and the abundances extracted from the conventional image are fused. This ensures that the method makes full use of the spatial structure and the spectra of the images. The proposed method is compared with several related methods on public HSI data sets. The results demonstrate that the proposed method has superior performance when compared to the existing state-of-the-art.