Elemental I(2) and Br(2) cleanly react with the 3:3 Pt(ii) metallamacrocycle of 3,3,3',3'-tetra(n-butyl)-1,1'-terephthaloylbis(thiourea)(cis-[Pt(II)(3)(L(p)(1)-S,O)(3)]3), in chloroform at room temperature, to yield oxidative addition products; (195)Pt NMR studies reveal that a stepwise oxidative addition readily occurs to each of the Pt(ii) centres in the metallamacrocycle to yield the mixed valence species cis-[Pt(II)(2)Pt(IV)I(2)(L(p)(1)-S,O)(3)] and cis-[Pt(II)Pt(IV)(2)I(4)(L(p)(1)-S,O)(3)], and the fully oxidised cis-[Pt(IV)(3)I(6)(L(p)(1)-S,O)(3)] in solution, depending on the mole ratio I(2):3. Similar results are obtained on treatment of solutions of 3 with elemental Br(2). Treatment of the corresponding 2:2 Pt(ii) complex of 3,3,3',3'-tetraethyl-1,1'-isophthaloylbis(thiourea)(cis-[Pt(II)(2)(L(m)(1)-S,O)(2)]4) with iodine, results in facile oxidative addition to yield cis-[Pt(IV)(2)(L(m)(1)-S,O)(2)I(4)], with a trans-Pt(iv)-iodo arrangement. Molecules in the crystal structure of 5 have their trans-Pt(iv)-iodo axes essentially aligned, with very close intermolecular iodide contacts (3.775(1)A), resulting in chains of weakly bound metallamacrocycles in the solid. An alternative electrolytic synthesis method, using a simple two-compartment glass cell containing 4 and a chosen halide salt in dichloromethane, led to the formation of cis-[Pt(IV)(2)(L(m)(1)-S,O)(2)Br(4)] 6 and cis-[Pt(IV)(2)(L(m)(1)-S,O)(2)Cl(4)] 7, completing characterization of a series of first-reported trans-Pt(iv)-X (X=I, Br, Cl) metallamacrocyclic complexes.