Integrating computation resources with networking technologies is an hot research topic targeting the optimization of containers deployment on a set of host machines interconnected by a network infrastructure. Particularly, next generation edge nodes will offer significant advantages leveraging on integrated computation resources and networking awareness, enabling configurable, granular and monitorable quality of service to different micro-services, applications and tenants, especially in terms of bounded endto-end latency. In this regard, SDN is a key technology enabling network telemetry and traffic switching with the granularity of the single traffic flow. However, currently available solutions are based on legacy SDN techniques, not enabling the matching of tunneled traffic, and thus require a tricky integration inside the hosts where containers are deployed. This work considers Kubernetes clusters deployed on next generation edge micro data center platforms and proposes an innovative SDN solution exploiting the P4 technology to gain visibility inside tunnelled traffic exchanged among pods. This way, the integration is achieved at the control plane level through the communication between Kubernetes and the SDN controller. The proposed solution is experimentally validated including a comprehensive framework enabling effective traffic switching and in-band telemetry at pod level. The major paper contributions consist in the design and the development of: (i) the networking applications at SDN control plane level; (ii) the P4 switch pipeline at the data plane level; (iii) the monitoring system used to collect, aggregate and elaborate the telemetry data.