1965
DOI: 10.1007/bf01112693
|View full text |Cite
|
Sign up to set email alerts
|

L�sungstypen von Differenzengleichungen und Summengleichungen in normierten abelschen Gruppen

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
3
0
1

Year Published

1967
1967
2021
2021

Publication Types

Select...
8

Relationship

0
8

Authors

Journals

citations
Cited by 13 publications
(4 citation statements)
references
References 15 publications
0
3
0
1
Order By: Relevance
“…Various further extensions and renements of these results are available, see, e.g., Schäfke (1965), Kooman and Tijdeman (1990), Pituk (1997), Buslaev and Buslaeva (2005), and the references therein.…”
Section: The Perron-kreuser Theorem a Linear Recurrence Relationmentioning
confidence: 90%
“…Various further extensions and renements of these results are available, see, e.g., Schäfke (1965), Kooman and Tijdeman (1990), Pituk (1997), Buslaev and Buslaeva (2005), and the references therein.…”
Section: The Perron-kreuser Theorem a Linear Recurrence Relationmentioning
confidence: 90%
“…Besides, under mild additional assumptions on the Chebyshev recurrence, all the information needed in our analysis is already provided by the more elementary Perron-Kreuser theorem 3 (cf. [26,41,43]) or its extensions by Schäfke [55]. See also Immink [28] and the references therein for an alternative approach in the case of recurrences with polynomial coefficients, originating in unpublished work by Ramis.…”
Section: Elements Of Birkhoff-trjitzinsky Theorymentioning
confidence: 99%
“…Bei den klassischen Arbeiten von Poincar'e, Perron, Birkhoff und Trjitzinsky handelt es sich allerdings um reine Existenzaussagen, die keinen Hinweis auf die T. I-IANscn~ algebraische Charakterisierung und numerische Konstruktion der gesuchten L6sungen geben. Dieses Problem wurde erst viele Jahre sparer yon SCH~,FKE [24,25] und HOFFMANN [13] untersucht. Zun~ichst ordnet man die speziellen LSsungen (1.2) der GrSBe ihres Wachstums nach, so dab xl zum betraglich kleinsten und xr zum betraglich gr6Bten Eigenwert geh6rt.…”
Section: Einfiihrungunclassified