1999
DOI: 10.1023/a:1007744304422
|View full text |Cite
|
Sign up to set email alerts
|

La conjecture de Baum–Connes pour les feuilletages moyennables

Abstract: Nous démontrons, en reprenant la construction de Higson and Kasparov, la conjecture de Baum-Connes pour les feuilletages dont le groupoïde d'holonomie est séparé et moyennable. Plus généralement, pour tout groupoïde localement compact σ-compact séparé avec système de Haar G, agissant proprement et isométriquement sur un champ continu d'espaces affines Euclidiens, l'application de Baum-Connes avec coefficients est un isomorphisme, et G est moyennable en K-théorie. De plus, nous montrons que C * (G) vérifie la f… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

4
251
0
4

Year Published

2001
2001
2024
2024

Publication Types

Select...
5
5

Relationship

0
10

Authors

Journals

citations
Cited by 252 publications
(259 citation statements)
references
References 30 publications
(51 reference statements)
4
251
0
4
Order By: Relevance
“…The proof of (ii) is a consequence of (i) and the fact that the strong BaumConnes conjecture implies the Baum-Connes conjecture for all G-algebras and it implies also that G is K-amenable which implies that the regular representation L : A ⋊ G → A ⋊ r G induces an isomorphism in K-theory [22].…”
Section: Examplesmentioning
confidence: 86%
“…The proof of (ii) is a consequence of (i) and the fact that the strong BaumConnes conjecture implies the Baum-Connes conjecture for all G-algebras and it implies also that G is K-amenable which implies that the regular representation L : A ⋊ G → A ⋊ r G induces an isomorphism in K-theory [22].…”
Section: Examplesmentioning
confidence: 86%
“…Tu was also able to prove a groupoid version of the above mentioned result of Higson and Kasparov (see [21]). In particular, all topologically amenable groupoids (in the sense of [1]) satisfy BC for arbitrary coefficients.…”
mentioning
confidence: 82%
“…This implies that the groupoid βΓ Γ is K-amenable [11]. Hence, we have that the C * -algebras C(βΓ) r Γ and C(βΓ) Γ are K-nuclear [10], [Proposition 4.17]. Hence, we get that Γ is K-exact, by Lemma 3.6.…”
Section: Lemma 32 If a Cmentioning
confidence: 98%