Seismic tomography provides a window into magmatic plumbing systems; however, obtaining sufficient data for ‘real-time’ imaging is challenging. Until now, syn-eruptive tomography has not been successfully demonstrated. For the first time, we obtained high-resolution images of Earth's interior during an ongoing volcanic eruption. We used data from 11,349 earthquakes, most of which during La Palma eruption (19 September-13 December, 2021), to perform travel-time seismic tomography. We present high-precision earthquake relocations and 3D distributions of P and S-wave velocities highlighting the geometry of magma sources. We identified three distinct structures: (1) a shallow localised region (< 3 km) of hydrothermal alteration; (2) spatially extensive, consolidated, oceanic crust extending to ~10 km depth and; (3) a large (> 400 km3) sub-crustal magma-filled rock volume intrusion extending from ~7 to 25 km depth. Our results suggest that this large magma reservoir feeds the La Palma eruption continuously for almost three months. Prior to eruption onset, magma ascended from ~10 km depth to the surface in < 7 days. In the upper 3 km, melt migration is along the western contact between consolidated oceanic crust and altered hydrothermal material. Similar structural weaknesses along the eastern contact could potentially cause new eruptive centres in the future.