All matter has density. The recorded uses of density to characterize matter date back to as early as ca. 250 BC, when Archimedes was believed to have solved “The Puzzle of The King's Crown” using density.[1] Today, measurements of density are used to separate and characterize a range of materials (including cells and organisms), and their chemical and/or physical changes in time and space. This Review describes a density‐based technique—magnetic levitation (which we call “MagLev” for simplicity)—developed and used to solve problems in the fields of chemistry, materials science, and biochemistry. MagLev has two principal characteristics—simplicity, and applicability to a wide range of materials—that make it useful for a number of applications (for example, characterization of materials, quality control of manufactured plastic parts, self‐assembly of objects in 3D, separation of different types of biological cells, and bioanalyses). Its simplicity and breadth of applications also enable its use in low‐resource settings (for example—in economically developing regions—in evaluating water/food quality, and in diagnosing disease).