Dealing with food safety issues in time through online public opinion incidents can reduce the impact of incidents and protect human health effectively. Therefore, by the smart technology of extracting the entity relationship of public opinion events in the food field, the knowledge graph of the food safety field is constructed to discover the relationship between food safety issues. To solve the problem of multi-entity relationships in food safety incident sentences for few-shot learning, this paper adopts the pipeline-type extraction method. Entity relationship is extracted from Bidirectional Encoder Representation from Transformers (BERTs) joined Bidirectional Long Short-Term Memory (BLSTM), namely, the BERT-BLSTM network model. Based on the entity relationship types extracted from the BERT-BLSTM model and the introduction of Chinese character features, an entity pair extraction model based on the BERT-BLSTM-conditional random field (CRF) is established. In this paper, several common deep neural network models are compared with the BERT-BLSTM-CRF model with a food public opinion events dataset. Experimental results show that the precision of the entity relationship extraction model based on BERT-BLSTM-CRF is 3.29%∼23.25% higher than that of other models in the food public opinion events dataset, which verifies the validity and rationality of the model proposed in this paper.