The existence of a pullback attractor is established for a stochastic reaction-diffusion equation on all n-dimensional space. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears as spatially distributed temporal white noise. The reaction-diffusion equation is recast as a random dynamical system and asymptotic compactness for this is demonstrated by using uniform a priori estimates for far-field values of solutions.
We consider a one-dimensional lattice with diffusive nearest neighbor interaction, a dissipative nonlinear reaction term and additive independent white noise at each node. We prove the existence of a compact global random attractor within the set of tempered random bounded sets. An interesting feature of this is that, even though the spatial domain is unbounded and the solution operator is not smoothing or compact, pulled back bounded sets of initial data converge under the forward flow to a random compact invariant set.
The ultimate sales letter will provide you a distinctive book to overcome you life to much greater. Book, as one of the reference to get many sources can be considered as one that will connect the life to the experience to the knowledge. By having book to read, you have tried to connect your life to be better. It will encourage your quality not only for your life but also people around you.
We study the asymptotic behavior of solutions for lattice dynamical systems. We first prove asymptotic compactness and then establish the existence of global attractors. The upper semicontinuity of the global attractor is also obtained when the lattice differential equations are approached by finite-dimensional systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.