We study pullback attractors of non-autonomous non-compact dynamical systems generated by differential equations with non-autonomous deterministic as well as stochastic forcing terms. We first introduce the concepts of pullback attractors and asymptotic compactness for such systems. We then prove a sufficient and necessary condition for existence of pullback attractors. We also introduce the concept of complete orbits for this sort of systems and use these special solutions to characterize the structures of pullback attractors. For random systems containing periodic deterministic forcing terms, we show the pullback attractors are also periodic under certain conditions. As an application of the abstract theory, we prove the existence of a unique pullback attractor for Reaction-Diffusion equations on R n with both deterministic and random external terms. Since Sobolev embeddings are not compact on unbounded domains, the uniform estimates on the tails of solutions are employed to establish the asymptotic compactness of solutions.
The existence of a pullback attractor is established for a stochastic reaction-diffusion equation on all n-dimensional space. The nonlinearity is dissipative for large values of the state and the stochastic nature of the equation appears as spatially distributed temporal white noise. The reaction-diffusion equation is recast as a random dynamical system and asymptotic compactness for this is demonstrated by using uniform a priori estimates for far-field values of solutions.
We study the asymptotic behavior of solutions for lattice dynamical systems. We first prove asymptotic compactness and then establish the existence of global attractors. The upper semicontinuity of the global attractor is also obtained when the lattice differential equations are approached by finite-dimensional systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.