We present a Hamilton cycle in the k-sided pancake network and four combinatorial algorithms to traverse the cycle. The network's vertices are coloured permutations π = p1p2 • • • pn, where each pi has an associated colour in {0, 1, . . . , k−1}. There is a directed edge (π1, π2) if π2 can be obtained from π1 by a "flip" of length j, which reverses the first j elements and increments their colour modulo k. Our particular cycle is created using a greedy min-flip strategy, and the average flip length of the edges we use is bounded by a constant. By reinterpreting the order recursively, we can generate successive coloured permutations in O(1)-amortized time, or each successive flip by a loop-free algorithm. We also show how to compute the successor of any coloured permutation in O(n)-time. Our greedy min-flip construction generalizes known Hamilton cycles for the pancake network (where k = 1) and the burnt pancake network (where k = 2). Interestingly, a greedy max-flip strategy works on the pancake and burnt pancake networks, but it does not work on the k-sided network when k > 2.