Ball-like plasmoids were generated from discharging a capacitor bank via a water surface. In the autonomous stage after current zero they have diameters up to 0.2 m and lifetimes of some hundreds of milliseconds, thus resembling ball lightning in some way. They were studied by applying high speed cameras, electric probes, calorimetric measurements, and spectroscopy. The plasmoids are found to consist of a true plasma surrounded by a cold envelope. Decreasing electron densities in the order of 10 20 m −3 to 10 22 m −3 were measured from Stark broadening in the initial (formation) phase. The electron temperature is estimated to be 2000-5000 K during most of the plasmoid's lifetime. The temperature of the neutral particles can exceed 1300 K. Calcium hydroxide molecular band emission is the major source of visible radiation in the autonomous phase. Chemiluminescence reactions between dissociation products of water and dissolved calcium are proposed as a source for this emission. The plasmoid's colder boundary layer consists of electric double layers that may attribute to the characteristic shape of the balls.