Several experiments were conducted in ASDEX Upgrade to prove the suitability of tungsten as a divertor target material under the conditions of a high density and low temperature divertor. The observed fluxes from a tungsten tile into the plasma are low, in keeping with the extremely low sputtering yields. In addition, the very favourable effect of `prompt redeposition' (redeposition during the first gyration) could be confirmed by the experiments. Cooling of the edge region by neon injection seems permissible, i.e. neon impurity sputtering did not increase the eroded fluxes of tungsten. The transport and accumulation behaviour were investigated by means of the laser blow-off technique. No accumulation effects could be observed in ohmic discharges. In discharges with NBI heating but without ICRH, strong accumulation can occur. High heat flux tests were performed on graphite tiles coated with plasma sprayed tungsten, which withstood a thermal load of 15 MW/m2 lasting 2 s as well as 1000 cycles of 10 MW/m2 for 2 s without disabling damage. Owing to the encouraging results, an experiment using a tungsten divertor is planned in ASDEX Upgrade
The loss of angular momentum of a rotating plasma due to mode locking is investigated using spectroscopic rotation measurements and magnetic probe data. The electromagnetic force on the plasma regarding both the interaction with the resistive vessel wall and the error field is calculated. Simulations of the temporal evolution of the toroidal bulk rotation by solving the momentum transport equation in the presence of the magnetic forces explain the toroidal momentum balance in detail. As a result we find that the plasma within the island is affected by the electromagnetic force, while the rest of the plasma is slowed down by viscous coupling.
Density limit investigations on ASDEX have been performed under a variety of conditions: ohmically heated and neutral injection heated plasmas in H2, D2 and He have been studied in different divertor configurations, after various wall coating procedures, with gas puff and pellet fuelling, and in different confinement regimes with their characteristically different density profiles. A detailed description of the parametric dependence of the density limit, which in all cases is a disruptive limit, is given. This limit is shown to be a limit to the density at the plasma edge. Therefore, the highest densities corresponding to neRqa/Bt>30*1019 m-2.T-1 are obtained with centrally peaked ne profiles. Radiation from the main plasma at the density limit is always significantly below the total input power. The plasma disruption is due to an m=2 instability which for medium and high qa is preceded by one or more minor disruptions. In this range of qa, the disruptive instability is initiated by the occurrence of a Marfe on the high field side as a consequence of strong plasma cooling in this region. The duration of the Marfe increases with increasing distance between the plasma edge and the q=2 surface. After penetrating onto closed flux surfaces the Marfe leads to a current contraction and a subsequent destabilization of the m = 2 mode. In helium plasmas a strongly radiating, poloidally symmetric shell is observed before the density limit instead of a Marfe. An instantaneous destabilization of this mode is observed at low qa. Detailed measurements of plasma edge and divertor parameters close to the density limit indicate the development of a cold, dense divertor plasma before the disruption. Models describing the scrape-off layer and the divertor region predict an upper limit to the edge density at low divertor temperatures according to power balance considerations. Their relations to the experimental findings, especially the low field side cooling, ar
Ball-like plasmoids were generated from discharging a capacitor bank via a water surface. In the autonomous stage after current zero they have diameters up to 0.2 m and lifetimes of some hundreds of milliseconds, thus resembling ball lightning in some way. They were studied by applying high speed cameras, electric probes, calorimetric measurements, and spectroscopy. The plasmoids are found to consist of a true plasma surrounded by a cold envelope. Decreasing electron densities in the order of 10 20 m −3 to 10 22 m −3 were measured from Stark broadening in the initial (formation) phase. The electron temperature is estimated to be 2000-5000 K during most of the plasmoid's lifetime. The temperature of the neutral particles can exceed 1300 K. Calcium hydroxide molecular band emission is the major source of visible radiation in the autonomous phase. Chemiluminescence reactions between dissociation products of water and dissolved calcium are proposed as a source for this emission. The plasmoid's colder boundary layer consists of electric double layers that may attribute to the characteristic shape of the balls.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.