The paper describes the effect of the isotopic mass on plasma parameters as observed in the ASDEX tokamak. The paper comprises Ohmic as well as L mode, H mode and H* mode scenarios. The measurements reveal that the ion mass is a substantial and robust parameter, which affects all the confinement times (energy, particle and momentum) in the whole operational window. Both core properties such as the sawtooth repetition time and edge properties such as the separatrix density change with the isotopic mass. Specific emphasis is given to the edge parameters and changes of the edge plasma due to different types of wall conditioning, such as carbonization and boronization. The pronounced isotope dependences of the edge and divertor parameters are explained by the secondary effect of different power fluxes into the scrape-off layer plasma and onto the divertor plates. Finally, the observations serve to test different transport theories. With respect to the ion temperature gradient driven turbulence, the isotope effect is also studied in pellet refuelled discharges with peaked density profiles. The results from ASDEX are compared with the results from other experiments
Several experiments were conducted in ASDEX Upgrade to prove the suitability of tungsten as a divertor target material under the conditions of a high density and low temperature divertor. The observed fluxes from a tungsten tile into the plasma are low, in keeping with the extremely low sputtering yields. In addition, the very favourable effect of `prompt redeposition' (redeposition during the first gyration) could be confirmed by the experiments. Cooling of the edge region by neon injection seems permissible, i.e. neon impurity sputtering did not increase the eroded fluxes of tungsten. The transport and accumulation behaviour were investigated by means of the laser blow-off technique. No accumulation effects could be observed in ohmic discharges. In discharges with NBI heating but without ICRH, strong accumulation can occur. High heat flux tests were performed on graphite tiles coated with plasma sprayed tungsten, which withstood a thermal load of 15 MW/m2 lasting 2 s as well as 1000 cycles of 10 MW/m2 for 2 s without disabling damage. Owing to the encouraging results, an experiment using a tungsten divertor is planned in ASDEX Upgrade
Puffing of impurities (neon, argon) and deuterium gas in the main chamber is used to feedback control the total radiated power fraction and the divertor neutral particle density simultaneously in the ASDEX Upgrade tokamak. The variation of Psep=Pheat-Prad(core) by impurity radiation during H mode shows a similar effect on the ELM behaviour as that obtained by a change of the heating power. For radiated power fractions above 90%, the ELM amplitude becomes very small and detachment from the divertor plates occurs, whilst no degradation of the global energy confinement is observed (completely detached high confinement mode). Additional deuterium gas puffing is found to increase the radiated power per impurity ion in the plasma core owing to the combined effect of a higher particle recycling rate and a lower core penetration probability. The outer divertor chamber, which is closed for deuterium neutrals, builds up a high neutral pressure, the magnitude of which is determined by the balance of particle sources and pumping. For this particular situation, the effective pumping time of neon and argon is considerably reduced, to less than 0.3 s, mainly owing to an improved divertor retention capability. The radiation characteristics of discharges with a neon driven radiative mantle are modelled using a 1-D radial impurity transport code that has been coupled to a simple divertor model describing particle recycling and pumping. The results of simulations are in good agreement with experiment
The results of divertor studies on ASDEX Upgrade, at currents of up to 1.2 MA and heating powers up to 10 M W are described, with emphasis on the ELMy H-mode. The spatial and temporal characteristics of their heat load, and the simulation of ELMs by a time-dependent scrape-off layer code are described. High gas puff rata were found to lead to a large increase in divertor neutral pressure, at modest changes in %, and to a strong reduction in timeaveraged power flow and complete detachment from both target plates in between ELMs. Using pre-programmed puffs of neon and argon, the radiative power losses could be raised to 75% of the heating power, in H-regime discharges, and the regime of enhanced divertor neutral pressure was found also to lead to an improved pumping of recycling impurities. 1.Introduction:ASDEX Upgrade is a mid-size tokamak w i t h non-circular cross-section (major radius R, , = 1.625m, horizontal minor radius a = 0.5 m, elongation b/a = 1.6), purpose-designed as a poloidal divertor device (Figure 1). Further distinguishing features of it are the poloidal field coils placed outside the toroidal ones, and the presence of a saddle coil ("PSL" .. pssive Stabilising loop) inside the vacuum vessel for stabilising the vertical displacement instability. Together, these two features provide a relatively large space between the vacuum vessel and the X-point of the poloidal field lines, although the present divertor configuration, selected to optimise the heat load distribution, places the target plates relatively close to the x-point.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.