Central cardiorespiratory and gas exchange limitations imposed by chronic obstructive pulmonary disease (COPD) impair ambulatory skeletal muscle oxygenation during whole body exercise. This investigation tested the hypothesis that peripheral factors per se contribute to impaired contracting lower limb muscle oxygenation in COPD patients. Submaximal neuromuscular electrical stimulation (NMES; 30, 40, and 50 mA at 50 Hz) of the quadriceps femoris was employed to evaluate contracting skeletal muscle oxygenation while minimizing the influence of COPD-related central cardiorespiratory constraints. Fractional O₂ extraction was estimated by near-infrared spectroscopy (deoxyhemoglobin/myoglobin concentration; deoxy-[Hb/Mb]), and torque output was measured by isokinetic dynamometry in 15 nonhypoxemic patients with moderate-to-severe COPD (SpO2 = 94 ± 2%; FEV₁ = 46.4 ± 10.1%; GOLD II and III) and in 10 age- and gender-matched sedentary controls. COPD patients had lower leg muscle mass than controls (LMM = 8.0 ± 0.7 kg vs. 8.9 ± 1.0 kg, respectively; P < 0.05) and produced relatively lower absolute and LMM-normalized torque across the range of NMES intensities (P < 0.05 for all). Despite producing less torque, COPD patients had similar deoxy-[Hb/Mb] amplitudes at 30 and 40 mA (P > 0.05 for both) and higher deoxy-[Hb/Mb] amplitude at 50 mA (P < 0.05). Further analysis indicated that COPD patients required greater fractional O₂ extraction to produce torque (i.e., ↑Δdeoxy-[Hb/Mb]/torque) relative to controls (P < 0.05 for 40 and 50 mA) and as a function of NMES intensity (P < 0.05 for all). The present data obtained during submaximal NMES of small muscle mass indicate that peripheral abnormalities contribute mechanistically to impaired contracting skeletal muscle oxygenation in nonhypoxemic, moderate-to-severe COPD patients.