A functional evaluation of skeletal muscle oxidative metabolism was performed in a group of obese adolescents (OB). The various components of pulmonary O(2) uptake (Vo(2)) kinetics were evaluated during 10-min constant-load exercises (CLE) on a cycloergometer at different percentages of Vo(2max). The relationships of these components with the gas exchange threshold (GET) were determined. Fourteen male OB [age 16.5 ± 1.0 (SD) yr, body mass index 34.5 ± 3.1 kg·m(-2)] and 13 normal-weight, age-matched nonathletic male volunteers (control group) were studied. The time-constant (τf) of the fundamental component and the presence, pattern, and relative amplitude of the slow component of Vo(2) kinetics were determined at 40, 60, and 80% of Vo(2max), previously estimated during an incremental test. Vo(2max) (l/min) was similar in the two groups. GET was lower in OB (55.7 ± 6.7% of Vo(2max)) than in control (65.1 ± 5.2%) groups. The τf was higher in OB subjects, indicating a slower fundamental component. At CLE 60% (above GET in OB subjects, below GET in control subjects) a slow component was observed in nine out of fourteen OB subjects, but none in the control group. All subjects developed a slow component at CLE 80% (above GET in both OB and control). Twelve OB subjects did not complete the 10-min CLE 80% due to voluntary exhaustion. In nine OB subjects, the slow component was characterized by a linear increase in Vo(2) as a function of time. The slope of this increase was inversely related to the time to exhaustion. The above findings should negatively affect exercise tolerance in obese adolescents and suggest an impairment of skeletal muscle oxidative metabolism. Also in obese adolescents, exercise evaluation and prescription at submaximal loads should be done with respect to GET and not at a given percentage of Vo(2max).
An integrative evaluation of oxidative metabolism was carried out in 9 healthy young men (age, 24.1 ± 1.7 yr mean ± SD) before (CTRL) and after a 10-day horizontal bed rest carried out in normoxia (N-BR) or hypoxia (H-BR, FiO2 = 0.147). H-BR was designed to simulate planetary habitats. Pulmonary O2 uptake (V̇o2) and vastus lateralis fractional O2 extraction (changes in deoxygenated hemoglobin+myoglobin concentration, Δ[deoxy(Hb+Mb)] evaluated using near-infrared spectroscopy) were evaluated in normoxia and during an incremental cycle ergometer (CE) and one-leg knee extension (KE) exercise (aimed at reducing cardiovascular constraints to oxidative function). Mitochondrial respiration was evaluated ex vivo by high-resolution respirometry in permeabilized vastus lateralis fibers. During CE V̇o2peak and Δ[deoxy(Hb+Mb)]peak were lower (P < 0.05) after both N-BR and H-BR than during CTRL; during KE the variables were lower after N-BR but not after H-BR. During CE the overshoot of Δ[deoxy(Hb+Mb)] during constant work rate exercise was greater in N-BR and H-BR than CTRL, whereas during KE a significant difference vs. CTRL was observed only after N-BR. Maximal mitochondrial respiration determined ex vivo was not affected by either intervention. In N-BR, a significant impairment of oxidative metabolism occurred downstream of central cardiovascular O2 delivery and upstream of mitochondrial function, possibly at the level of the intramuscular matching between O2 supply and utilization and peripheral O2 diffusion. Superposition of hypoxia on bed rest did not aggravate, and partially reversed, the impairment of muscle oxidative function in vivo induced by bed rest. The effects of longer exposures will have to be determined.
Oxidative function during exercise was evaluated in 11 young athletes with marked skeletal muscle hypertrophy induced by long-term resistance training (RTA; body mass 102.6 Ϯ 7.3 kg, mean Ϯ SD) and 11 controls (CTRL; body mass 77.8 Ϯ 6.0 kg). Pulmonary O2 uptake (V O2) and vastus lateralis muscle fractional O2 extraction (by near-infrared spectroscopy) were determined during an incremental cycle ergometer (CE) and one-leg knee-extension (KE) exercise. Mitochondrial respiration was evaluated ex vivo by high-resolution respirometry in permeabilized vastus lateralis fibers obtained by biopsy. Quadriceps femoris muscle cross-sectional area, volume (determined by magnetic resonance imaging), and strength were greater in RTA vs. CTRL (by ϳ40%, ϳ33%, and ϳ20%, respectively). V O2peak during CE was higher in RTA vs. CTRL (4.05 Ϯ 0.64 vs. 3.56 Ϯ 0.30 l/min); no difference between groups was observed during KE. The O2 cost of CE exercise was not different between groups. When divided per muscle mass (for CE) or quadriceps muscle mass (for KE), V O2 peak was lower (by 15-20%) in RTA vs. CTRL. Vastus lateralis fractional O2 extraction was lower in RTA vs. CTRL at all work rates, during both CE and KE. RTA had higher ADP-stimulated mitochondrial respiration (56.7 Ϯ 23.7 pmol O2·s Ϫ1 ·mg Ϫ1 ww) vs. CTRL (35.7 Ϯ 10.2 pmol O2·s Ϫ1 ·mg Ϫ1 ww) and a tighter coupling of oxidative phosphorylation. In RTA, the greater muscle mass and maximal force and the enhanced mitochondrial respiration seem to compensate for the hypertrophy-induced impaired peripheral O2 diffusion. The net results are an enhanced whole body oxidative function at peak exercise and unchanged efficiency and O 2 cost at submaximal exercise, despite a much greater body mass. skeletal muscle hypertrophy; mitochondrial respiration; oxidative metabolism during exercise RESISTANCE TRAINING PROGRAMS have been developed with the aim of improving variables of muscle function such as strength, power, speed, local muscular endurance, coordination, and flexibility (21). Resistance training is now considered an important part of training and rehabilitation programs for healthy subjects and for various types of patients, such as cardiac patients (45), patients with pulmonary diseases (10), patients undergoing prolonged bed-rest periods (2), or elderly subjects (28). In these populations, the combination of resistance training with the more conventional endurance exercise improves the patients' outcomes and quality of life (45).An increase in the cross-sectional area of skeletal muscle fibers and a shift of fiber-type distribution toward type 2 fibers are typical adaptations induced by resistance training; these adaptations enhance the muscle force-generating potential (12) but could represent an impairment to skeletal muscle oxidative metabolism. On the other hand, muscles with higher maximal force would need to recruit a lower number of motor units, and therefore more oxidative (and more efficient) muscle fibers (20,26). According to other authors, strength training may increas...
An analysis of previously published data obtained by our group on patients characterized by markedly slower pulmonary VO₂ kinetics (heart transplant recipients, patients with mitochondrial myopathies, patients with McArdle disease) was carried out in order to suggest that slow VO₂ kinetics should not be considered the direct cause, but rather a marker, of impaired exercise tolerance. For a given ATP turnover rate, faster (or slower) VO₂ kinetics are associated with smaller (or greater) muscle [PCr] decreases. The latter, however, should not be taken per se responsible for the higher (or lower) exercise tolerance, but should be considered within the general concept of "metabolic stability". Good muscle metabolic stability at a given ATP turnover rate (~power output) is associated with relatively smaller decreases, compared to rest, in [PCr] and in the Gibbs free energy of ATP hydrolysis, as well as with relatively smaller increases in [Pi], [ADP(free)], [AMP(free)], and [IMP(free)], metabolites directly related to fatigue. Disturbances in muscle metabolic stability can affect muscle function in various ways, whereas good metabolic stability is associated with less fatigue and higher exercise tolerance. Smaller [PCr] decreases, however, are strictly associated with a faster VO₂ kinetics. Thus, faster VO₂ kinetics may simply be an "epiphenomenon" of a relatively higher metabolic stability, which would then represent the relevant variable in terms of fatigue and exercise tolerance.
The prevalence of obesity in children has increased dramatically during the past decades in Europe and understanding physical fitness and its components in children is critical to design and implement effective interventions. The objective of the present study was to analyse the association between physical fitness (aerobic, speed, agility, power, flexibility and balance) and body mass index (BMI) in pre-pubertal children. A total of 2411 healthy schoolchildren (7-11 years) participated in this study. Anthropometric characteristics and body composition were assessed by skinfold thickness. Physical fitness was measured by nine physical fitness tests: endurance running, 20 m running speed, agility, handgrip strength, standing long jump and squat jump, sit and reach, medicine ball forward throw and static balance. No relevant differences were observed between boys and girls regarding anthropometric characteristics, body composition and physical fitness. However, overweight and obese children showed significantly lower physical fitness levels in endurance running, speed and agility (mean: +18.8, +5.5 and +14.5% of time to complete tasks, respectively), lower limb power normalised to body mass (-23.3%) and balance tests (number of falls: +165.5%) than their normal weight counterparts. On the other hand, obesity did not affect handgrip, throwing and flexibility. In conclusion, increased BMI was associated with lower performance capabilities limiting proper motor skill development, which directly affects the ability of children to take on sports skills. Actions undertaken to promote children's wellness and fitness should be prioritised and introduced early in life with the aim of enhancing physical fitness as well as preventing overweight and obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.