A growing body of evidence has confirmed that inflammatory mechanisms are involved in the formation and treatment of coronary atherosclerotic disease (CAD). An increase in circulatory levels of inflammatory cytokines has been found in patients with CAD, while the molecular mechanisms of inflammation still remain elusive. This study was designed to identify differentially expressed genes (DEGs), and to explore the molecular mechanism and core genes that are involved in the effects of Lactobacillus plantarum 299v (Lp299v) supplementation. Microarray dataset (GSE156357) was downloaded from the Gene Expression Omnibus (GEO) database. The DEGs were identified by the R software. Then, the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and construction of protein-protein interaction (PPI) network were performed by DAVID, STRING, and Cytoscape. In daily alcohol user (DAU) group, 7,541 DEGs were identified, including 206 up-regulated and 7,335 down-regulated DEGs. In non-daily alcohol user (non-DAU) group, 2,799 DEGs were identified (2,491 up-regulated and 308 down-regulated DEGs). The GO enrichment analysis revealed that DEGs were mainly enriched in cell division, mitosis, and chemotactic cytokines. The KEGG enrichment analysis showed that Lp299v supplementation reduced the levels of chemotactic cytokines, and weakened immune response. Proteins of G protein-coupled receptor, inflammatory response, regulation of cell proliferation and apoptosis-related proteins were found in the PPI network. The core genes were associated with G protein-coupled receptor, inflammatory response, and cell proliferation and apoptosis. The weighted gene co-expression network analysis (WGCNA) enriched the DEGs in 4 modules. This study indicated the expressions of chemokine receptors and regulation of immune response in the Lp299v supplementation. Meanwhile, it was supposed that chemokine receptors may have a cellular effect.