The 10-day explosive phase at the start of the 2008-2009 eruption of Chaitén volcano in southern Chile (42.83°S, 72.65°W) blanketed the steep, rain-forestcloaked, 77-km 2 Chaitén River drainage basin with 3 to >100 cm of tephra; predominantly fine to extremely fine rhyolitic ash fell during the latter half of the explosive phase. Rain falling on this ash blanket within days of cessation of major explosive activity generated a hyperconcentratedflow lahar, followed closely by a complex, multi-day, muddy flood (streamflow bordering on dilute hyperconcentrated flow). Sediment mobilized in this lahar-flood event filled the Chaitén River channel with up to 7 m of sediment, buried the town of Chaitén (10 km downstream of the volcano) in up to 3 m of sediment, and caused the lower 3 km of the channel to avulse through the town. Although neither the nature nor rate of the sedimentation response is unprecedented, they are unusual in several ways: (1) (3) The volume of sediment eroded from hillslopes and delivered to the Chaitén River channel was at least 3-8×10 6 m 3 -roughly 15-40 % of the minimum tephra volume that mantled the Chaitén River drainage basin. (4) The acute sedimentation response to rainfall appears to have been due to the thickness and fineness of the ash blanket (inhibiting infiltration of rain) and the steepness of the basin's hillslopes. Other possible factors such as the prior formation of an ash crust, development of a hydrophobic surface layer, or large-scale destruction of rain-intercepting vegetation did not play a role.