A nonrelativistic (NR) theory of recoil corrections to the magnetic moments of bound particles is revisited. A number of contributions can be described within an NR theory with the help of various potentials. We study those potential-type contributions for two-body atomic systems. We have developed an approach, that allows us to find the g factor for an electron or muon in a two-body bound system for an arbitrary electrostatic interaction together with the m/M recoil corrections, as well as the binding corrections to the g factor of the nucleus. We focus our attention on light muonic two-body atoms, where the recoil effects are enhanced. Both mentioned kinds of contributions have been previously known only for the pure Coulomb effects. We have applied the here-obtained master equations to a few particular cases of perturbations of the Coulomb potential. In particular, the results on the recoil corrections to the finitenuclear-size (FNS) and Uehling-potential contributions to the g factor of the bound muon are obtained. The Uehling-potential and FNS contributions to the g factor of the bound nucleus have been found as well together with the related recoil corrections. We have generalized the results for the case of the g factor of a bound muon in a three-body atomic system consisting of an electron, a muon, and a spinless nucleus.