In the chapter, we are focused on laminar-turbulent transition in compressible flows triggered by Kelvin-Helmholtz (KH) and Rayleigh-Taylor (RT) instabilities. Compressible flow equations in conservation form are considered. We bring forth the characteristic feature of supersonic flow from the dynamical system point of view. Namely, we show analytically and confirm numerically that the phase space is separated into independent subspaces by the systems of stationary shock waves. Floquet theory analysis is applied to the linearized problem using matrix-free implicitly restarted Arnoldi method. All numerical methods are designed for CPU and multiGPU architecture using MPI across GPUs. Some benchmark data and features of development are presented. We show that KH for symmetric 2D perturbations undergoes cycle bifurcation scenarios with many chaotic cycle threads, each thread being a Feigenbaum-Sharkovskiy-Magnitskii (FShM) cascade. With the break of the symmetry, a 3D instability develops rapidly, and the bifurcations includes Landau-Hopf scenario with computationally stable 4D torus. For each torus, there exist threads of cycles that can develop chaotic regimes, so the flow is more complicated and difficult to study. Thus, we present laminar-turbulent development of compressible RT and KH instabilities as the bifurcations scenarios.