Urban form is increasingly being identified as an important determinant of air pollution in developed countries. However, the effect of urban form on air pollution in developing countries has not been adequately addressed in the literature to date, which points to an evident omission in current literature. In order to fill this gap, this study was designed to estimate the impacts of urban form on air pollution for a panel made up of China’s five most rapidly developing megacities (Beijing, Tianjin, Shanghai, Chongqing, and Guangzhou) using time series data from 2000 to 2012. Using the official Air Pollution Index (API) data, this study developed three quantitative indicators: mean air pollution index (MAPI), air pollution ratio (APR), and continuous air pollution ratio (CAPR), to evaluate air pollution levels. Moreover, seven landscape metrics were calculated for the assessment of urban form based on three aspects (urban size, urban shape irregularity, and urban fragmentation) using remote sensing data. Panel data models were subsequently employed to quantify the links between urban form and air pollution. The empirical results demonstrate that urban expansion surprisingly helps to reduce air pollution. The substitution of clean energy for dirty energy that results from urbanization in China offers a possible explanation for this finding. Furthermore, urban shape irregularity positively correlated with the number of days with polluted air conditions, a result could be explained in terms of the influence of urban geometry on traffic congestion in Chinese cities. In addition, a negative association was identified between urban fragmentation and the number of continuous days of air pollution, indicating that polycentric urban forms should be adopted in order to shorten continuous pollution processes. If serious about achieving the meaningful alleviation of air pollution, decision makers and urban planners should take urban form into account when developing sustainable cities in developing countries like China.