This paper presents the development of a road lane detection algorithm using image processing techniques. This algorithm is developed based on dynamic videos, which are recorded using on-board cameras installed in vehicles for Malaysian highway conditions. The recorded videos are dynamic scenes of the background and the foreground, in which the detection of the objects, presence on the road area such as vehicles and road signs are more challenging caused by interference from background elements such as buildings, trees, road dividers and other related elements or objects. Thus, this algorithm aims to detect the road lanes for three significant parameter operations; vanishing point detection, road width measurements, and Region of Interest (ROI) of the road area, for detection purposes. The techniques used in the algorithm are image enhancement and edges extraction by Sobel filter, and the main technique for lane detection is a Hough Transform. The performance of the algorithm is tested and validated by using three videos of highway scenes in Malaysia with normal weather conditions, raining and a night-time scene, and an additional scene of a sunny rural road area. The video frame rate is 30fps with dimensions of 720p (1280x720) HD pixels. In the final achievement analysis, the test result shows a true positive rate, a TP lane detection