Features extracted from the electromyography (EMG) signal normally consist of irrelevant and redundant features. Conventionally, feature selection is an effective way to evaluate the most informative features, which contributes to performance enhancement and feature reduction. Therefore, this article proposes a new competitive binary grey wolf optimizer (CBGWO) to solve the feature selection problem in EMG signals classification. Initially, short-time Fourier transform (STFT) transforms the EMG signal into time-frequency representation. Ten time-frequency features are extracted from the STFT coefficient. Then, the proposed method is used to evaluate the optimal feature subset from the original feature set. To evaluate the effectiveness of proposed method, CBGWO is compared with binary grey wolf optimization (BGWO1 and BGWO2), binary particle swarm optimization (BPSO), and genetic algorithm (GA). The experimental results show the superiority of CBGWO not only in classification performance, but also feature reduction. In addition, CBGWO has a very low computational cost, which is more suitable for real world application.
Electromyography (EMG) has been widely used in rehabilitation and myoelectric prosthetic applications. However, a recent increment in the number of EMG features has led to a high dimensional feature vector. This in turn will degrade the classification performance and increase the complexity of the recognition system. In this paper, we have proposed two new feature selection methods based on a tree growth algorithm (TGA) for EMG signals classification. In the first approach, two transfer functions are implemented to convert the continuous TGA into a binary version. For the second approach, the swap, crossover, and mutation operators are introduced in a modified binary tree growth algorithm for enhancing the exploitation and exploration behaviors. In this study, short time Fourier transform (STFT) is employed to transform the EMG signals into time-frequency representation. The features are then extracted from the STFT coefficient and form a feature vector. Afterward, the proposed feature selection methods are applied to evaluate the best feature subset from a large available feature set. The experimental results show the superiority of MBTGA not only in terms of feature reduction, but also the classification performance.
<p>Wavelet transform (WT) has recently drawn the attention of the researchers due to its potential in electromyography (EMG) recognition system. However, the optimal mother wavelet selection remains a challenge to the application of WT in EMG signal processing. This paper presents a detail study for different mother wavelet function in discrete wavelet transform (DWT) and continuous wavelet transform (CWT). Additionally, the performance of different mother wavelet in DWT and CWT at different decomposition level and scale are also investigated. The mean absolute value (MAV) and wavelength (WL) features are extracted from each CWT and reconstructed DWT wavelet coefficient. A popular machine learning method, support vector machine (SVM) is employed to classify the different types of hand movements. The results showed that the most suitable mother wavelet in CWT are Mexican hat and Symlet 6 at scale 16 and 32, respectively. On the other hand, Symlet 4 and Daubechies 4 at the second decomposition level are found to be the optimal wavelet in DWT. From the analysis, we deduced that Symlet 4 at the second decomposition level in DWT is the most suitable mother wavelet for accurate classification of EMG signals of different hand movements. </p>
Breast cancer (BC) remains the most dominant cancer among women worldwide. Numerous BC gene expression microarray-based studies have been employed in cancer classification and prognosis. The availability of gene expression microarray data together with advanced classification methods has enabled accurate and precise classification. Nevertheless, the microarray datasets suffer from a large number of gene expression levels, limited sample size, and irrelevant features. Additionally, datasets are often asymmetrical, where the number of samples from different classes is not balanced. These limitations make it difficult to determine the actual features that contribute to the existence of cancer classification in the gene expression profiles. Various accurate feature selection methods exist, and they are being widely applied. The objective of feature selection is to search for a relevant, discriminant feature subset from the basic feature space. In this review, we aim to compile and review the latest hybrid feature selection methods based on bio-inspired metaheuristic methods and wrapper methods for the classification of BC and other types of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.