2010
DOI: 10.1142/s179374421000020x
|View full text |Cite
|
Sign up to set email alerts
|

Laplaciens De Graphes Infinis I-Graphes Métriquement Complets

Abstract: A la mémoire de mon père Pr. Dr. Ing. Bèchir Torki (1931-2009 Résumé: On introduit le Laplacien ∆ ω,c d'un graphe G localement fini pondéréà la fois sur les sommets et sur les arêtes, ainsi que la notion d'opérateur de Schrödinger ∆ 1,a + W . Pour les graphesà poids constants sur les sommets, onétend un résultat de Wojciechowski pour le Laplacien et un résultat de Dodziuk pour les opérateurs de Schrödinger concernant le caractère essentiellement auto-adjoint. Le résultat principal de ce travailétablit que pour… Show more

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
4
1

Citation Types

0
37
0

Year Published

2011
2011
2014
2014

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 35 publications
(37 citation statements)
references
References 14 publications
0
37
0
Order By: Relevance
“…This result of [3] was extended in [11] to semi-bounded below operator H| C c (V ) in ℓ 2 w (V ), where H is as in (6). For a study of essential self-adjointness of Schrödinger operators (without magnetic field) on a metrically non-complete graph, see [4].…”
Section: Background Of the Problemmentioning
confidence: 95%
See 4 more Smart Citations
“…This result of [3] was extended in [11] to semi-bounded below operator H| C c (V ) in ℓ 2 w (V ), where H is as in (6). For a study of essential self-adjointness of Schrödinger operators (without magnetic field) on a metrically non-complete graph, see [4].…”
Section: Background Of the Problemmentioning
confidence: 95%
“…For the case σ ≡ 1, see [2,3]. Let W : V → R, and consider a Schrödinger-type expression Hu := ∆ σ u + Wu.…”
Section: A Magnetic Schrödinger Operatormentioning
confidence: 99%
See 3 more Smart Citations