2010
DOI: 10.1134/s0032946010020055
|View full text |Cite
|
Sign up to set email alerts
|

Large deviations for distributions of sums of random variables: Markov chain method

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1

Citation Types

0
2
0
1

Year Published

2011
2011
2016
2016

Publication Types

Select...
4
1

Relationship

0
5

Authors

Journals

citations
Cited by 6 publications
(3 citation statements)
references
References 23 publications
0
2
0
1
Order By: Relevance
“…Among the existing methods for large deviations (see, e. g., Saulis and Statulevičius 1991;Jensen 1995;Borovkov 1999;Fatalov 2011Fatalov , 2010 Zhao 2011), we rely on the cumulant method that was proposed by S. V. Statulevičius (1966) and developed by R. Rudzkis, L. Saulis, and V. Statulevičius (1978), as it is a powerful method that permits the systematic investigation of large deviations for various statistics.…”
Section: Applied Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…Among the existing methods for large deviations (see, e. g., Saulis and Statulevičius 1991;Jensen 1995;Borovkov 1999;Fatalov 2011Fatalov , 2010 Zhao 2011), we rely on the cumulant method that was proposed by S. V. Statulevičius (1966) and developed by R. Rudzkis, L. Saulis, and V. Statulevičius (1978), as it is a powerful method that permits the systematic investigation of large deviations for various statistics.…”
Section: Applied Methodsmentioning
confidence: 99%
“…The papers (Aksomaitis 1965(Aksomaitis , 1967(Aksomaitis , 1973Statulevičius 1967;Saulis 1978Saulis , 1981Saulis and Deltuvienė 2007) address large deviations in the Cramér zone for distributions of random sums. Of existing methods on large deviations (see, e. g., Saulis and Statulevičius 1991;Jensen 1995;Borovkov 1999;Fatalov 2011Fatalov , 2010; Gao and Zhao 2011), we rely on the cumulant method. However, there are only a small number of papers (see, e. g., Statulevičius 1967;Saulis 1978Saulis , 1981Saulis and Deltuvienė 2007;Kasparavičiūtė and Saulis 2010, 2011a, 2011b, 2013 on normal approximation taking into account large deviations for the distribution of the sums of a r. n. s. in the case where cumulant method is used.…”
Section: Limit Theorems For Compound Sumsmentioning
confidence: 99%
“…Имеющиеся у автора доказательства следствий 1.1, 1.2 довольно длинны и в настоящей статье не приводятся. Нетривиальный аналог теорем 1.1, 1.2 для простейшей марковской цепи, представляющей собой последовательность независимых одинаково распределенных случайных величин, доказан в [34]. § 2.…”
unclassified