Fig. 1. This figure shows some of our applications in action. From left to right: Our collaborative map visualization application with two users visualizing different parts of the map at the same time on our 3 × 3 array of nine projectors; Our collaborative emergency management application with two users trying to draw a path to hazardous location and dispatching teams of first responders on our 3 × 3 array of nine projectors; Digital graffiti drawn using our collaborative graffiti application on only six of the projectors. We deliberately did not edge blend the projectors to show the six projectors clearly; Four children working together on our digital graffiti application on a 3 × 3 array of nine projectors.Abstract-We present the first distributed paradigm for multiple users to interact simultaneously with large tiled rear projection display walls. Unlike earlier works, our paradigm allows easy scalability across different applications, interaction modalities, displays and users. The novelty of the design lies in its distributed nature allowing well-compartmented, application independent, and application specific modules. This enables adapting to different 2D applications and interaction modalities easily by changing a few application specific modules. We demonstrate four challenging 2D applications on a nine projector display to demonstrate the application scalability of our method: map visualization, virtual graffiti, virtual bulletin board and an emergency management system. We demonstrate the scalability of our method to multiple interaction modalities by showing both gesture-based and laser-based user interfaces. Finally, we improve earlier distributed methods to register multiple projectors. Previous works need multiple patterns to identify the neighbors, the configuration of the display and the registration across multiple projectors in logarithmic time with respect to the number of projectors in the display. We propose a new approach that achieves this using a single pattern based on specially augmented QR codes in constant time. Further, previous distributed registration algorithms are prone to large misregistrations. We propose a novel radially cascading geometric registration technique that yields significantly better accuracy. Thus, our improvements allow a significantly more efficient and accurate technique for distributed self-registration of multi-projector display walls.