Large-area displays made up of several projectors show significant variation in color. In this paper, we identify different projector parameters that cause the color variation and study their effects on the luminance and chrominance characteristics of the display. This work leads to the realization that luminance varies significantly within and across projectors, while chrominance variation is relatively small, especially across projectors of same model. To address this situation, we present a method to achieve luminance matching across all pixels of a multiprojector display that results in photometrically uniform displays. We use a camera as a measurement device for this purpose. Our method comprises a one-time calibration step that generates a per channel per projector luminance attenuation map (LAM), which is then used to correct any image projected on the display at interactive rates on commodity graphics hardware. To the best of our knowledge, this is the first effort to match luminance across all the pixels of a multiprojector display.
Abstract-Multi-projector, large-scale displays are used in scientific visualization, virtual reality and other visually intensive applications. In recent years, a number of camera-based computer vision techniques have been proposed to register the geometry and color of tiled projectionbased display. These automated techniques use cameras to "calibrate" display geometry and photometry, computing per-projector corrective warps and intensity corrections that are necessary to produce seamless imagery across projector mosaics. These techniques replace the traditional labor-intensive manual alignment and maintenance steps, making such displays cost-effective, flexible, and accessible.In this paper, we present a survey of different camerabased geometric and photometric registration techniques reported in the literature to date. We discuss several techniques that have been proposed and demonstrated, each addressing particular display configurations and modes of operation. We overview each of these approaches and discuss their advantages and disadvantages. We examine techniques that address registration on both planar (video walls) and arbitrary display surfaces and photometric correction for different kinds of display surfaces. We conclude with a discussion of the remaining challenges and research opportunities for multi-projector displays.
Large area tiled displays are gaining popularity for use in collaborative immersive virtual environments and scientific visualization. While recent work has addressed the issues of geometric registration, rendering architectures, and human interfaces, there has been relatively little work on photometric calibration in general, and photometric non-uniformity in particular. For example, as a result of differences in the photometric characteristics of projectors, the color and intensity of a large area display varies from place to place. Further, the imagery typically appears brighter at the regions of overlap between adjacent projectors.In this paper we analyze and classify the causes of photometric non-uniformity in a tiled display. We then propose a methodology for determining corrections designed to achieve uniformity, that can correct for the photometric variations across a tiled projector display in real time using per channel color look-up-tables (LUT).
Arguably, the most vexing problem remaining for multi-projector displays is that of photometric (brightness) seamlessness within and across different projectors. Researchers have strived for strict photometric uniformity that achieves identical response at every pixel of the display. However, this goal typically results in displays with severely compressed dynamic range and poor image quality.In this paper, we show that strict photometric uniformity is not a requirement for achieving photometric seamlessness. We introduce a general goal for photometric seamlessness by defining it as an optimization problem balancing perceptual uniformity with display quality. Based on this goal, we present a new method to achieve perceptually seamless high quality displays. We first derive a model that describes the photometric response of projection-based displays. Then we estimate the model parameters and modify them using perception-driven criteria. Finally, we use the graphics hardware to reproject the image computed using the modified model parameters by manipulating only the projector inputs at interactive rates.Our method has been successfully demonstrated on three different practical display systems at Argonne National Laboratory, made of 2 × 2 array of four projectors, 2 × 3 array of six projectors and 3 × 5 array of fifteen projectors. Our approach is efficient, automatic and scalable -requiring only a digital camera and a photometer. To the best of our knowledge, this is the first approach and system that addresses the photometric variation problem from a perceptual stand point and generates truly seamless displays with high dynamic range.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.