a b s t r a c tThis paper addresses the issue of developing advanced subgrid model for large-eddy simulations (LES) of turbulent flows based on Lattice Boltzmann methods (LBM). Most of already existing subgrid closures used in LES-LBM are straightforward extensions of the most crude model developed within the Navier-Stokes equations, namely the Smagorinsky eddy-viscosity model. In a first part, it is shown how to obtain an improved eddy-viscosity subgrid model for LBM. The original implementation of the Inertial-Range Consistent Smagorinsky model proposed by Dong and Sagaut for the D3Q19 scheme is used as an illustration. In a second step, an original extension of the Approximate Deconvolution Method proposed by Adams and Stolz for Navier-Stokes simulation is proposed. This new LBM-LES approach does not rely on the eddy-viscosity concept and is written directly within the LBM framework. It is shown that it can be implemented thanks to a trivial modification of the existing LBM solvers for Direct Numerical Simulation.