This study provides a comparison between an Eulerian and a Lagrangian approach for simulation of ice crystal trajectories and impact in a generic turbofan compressor. The engine-like geometry consists of a one-and-a-half stage (stator-rotor-stator) compressor in which the computed air flow is steady and inviscid. Both methods apply the same models to evaluate ice crystal dynamics, mass and heat transfer, and phase change along ice crystal trajectories. The impingement of the crystals on the blade surfaces is modeled assuming full deposition for comparison and validation purposes. Moreover, the effect of ice crystal diameter and sphericity variations on impinging mass flux and a