[91][92][93][94][95][96][97][98][99][100][101][102]. Soil properties of rhizosphere zones in coniferous forests are influenced by the presence of ectomycorrhizae. To elucidate the role of ectomycorrhizae (ECM) on the alteration of chemical and mineralogical properties of soils, soil pH, total C and N, cation exchange capacity, and the contents of mica, chlorite, and kaolinite, 2:1 type expandable clays, and amorphous minerals were compared in two soils, soils influenced by ectomycorrhizal fungi (ECS) and non-ectomycorrhizosphere soils (N-ECM) of Picea glauca x engelmannii (Moench.) Voss. Specifically, the two ECS soils were dominated by (1) Piloderma spp. (ECS-A) and (2) Inocybe lacera-like and Hebeloma-like morphotypes or where Piloderma spp. colonization was <1% (ECS-B). Our results showed that pH was lower in ECS compared to N-ECM samples. Total C and N were significantly higher in ECS soils than N-ECM samples. Cation exchange capacity as well as exchangeable K + , and Na + were higher in ECS compared to N-ECM soils. X-ray diffraction analysis showed that the amount of 2:1 expanding clays (vermiculite and smectite) was higher in ECS than N-ECM samples and results suggest that there is an enhanced transformation of mica and chlorite to 2:1 type expandable clays in ECS samples when compared to N-ECM samples. The differences in chemical and mineralogical properties between ECS and N-ECM soils, in our study, support earlier studies that show ectomycorrhizal fungi can alter the properties of soils in the rhizosphere zone.