Metal contacts are a key limiter to the electronic performance of two-dimensional (2D) semiconductor devices. Here we present a comprehensive study of contact interfaces between seven metals (Y, Sc, Ag, Al, Ti, Au, Ni, with work functions from 3.1 to 5.2 eV) and monolayer MoS 2 grown by chemical vapor deposition. We evaporate thin metal films onto MoS 2 and study the interfaces by Raman spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, transmission electron microscopy, and electrical characterization. We uncover that, 1) ultrathin oxidized Al dopes MoS 2 ntype (>2×10 12 cm -2 ) without degrading its mobility, 2) Ag, Au, and Ni deposition causes varying levels of damage to MoS 2 (broadening Raman E' peak from <3 cm -1 to >6 cm -1 ), and 3) Ti, Sc, and Y react with MoS 2 . Reactive metals must be avoided in contacts to monolayer MoS 2 , but control studies reveal the reaction is mostly limited to the top layer of multilayer films. Finally, we find that 4) thin metals do not significantly strain MoS 2 , as confirmed by X-ray diffraction. These are important findings for metal contacts to MoS 2 , and broadly applicable to many other 2D semiconductors.