Conventional microelectronics exploits only the charge degree of freedom of the electron. Bringing the spin degree of freedom to bear on sensing, radio frequency, memory and logic applications opens up new possibilities for 'more than Moore' devices incorporating magnetic components that can couple to an external field, store a bit of data or represent a Boolean state. Moreover, the electron spin is an archetypal two-state quantum system that is an excellent candidate for a solid-state realization of a qubit.