Determining which traits allow species to live at higher elevations is essential to understanding the forces that shape montane biodiversity.
For the many animals that rely on flight for locomotion, a long‐standing hypothesis is that species with relatively large wings should better persist in high‐elevation environments because wings that are large relative to the body generate more lift and decrease the aerobic costs of remaining aloft. Although these biomechanical and physiological predictions have received some support in birds, other flying taxa often possess smaller wings at high elevations or no wings at all.
To test if predictions about the requirements for relative wing size at high elevations are generalizable beyond birds, we conducted macroecological analyses on the altitudinal characteristics of 302 Nearctic dragonfly species.
Consistent with the biomechanical and aerobic hypotheses, species with relatively larger wings live at higher elevations and have wider elevation breadths—even after controlling for a species' body size, mean thermal conditions, and range size. Moreover, a species' relative wing size had nearly as large of an impact on its maximum elevation as being adapted to the cold.
Relatively large wings may be essential to high‐elevation life in species that completely depend on flight for locomotion, like dragonflies or birds. With climate change forcing taxa to disperse upslope, our findings further suggest that relatively large wings could be a requirement for completely volant taxa to persist in montane habitats.