Background: Dengue fever and Zika are two of the Aedes-borne diseases. Despite being widely used, synthetic mosquitocides become abortive for the mosquito control due to growing resistance and environmental pollution. In Gia Lai province (dengue-endemic area), a huge amount of cashew nut shell waste with roughly 100,000 tons/year has been disposed of into the environment, potentiating a high risk of pollution.
Methodology/Principal findings: To utilize it, anacardic acid was extracted and combined it with ethanol extract of the local lime peel, which contains limonene, to generate APL formulation. APL robustly exhibited inhibition of egg hatching, larvicidal effect, and repellent effect against female mosquitoes from oviposition sites in the laboratory and field. The results showed that, at a dose of 12.5 ppm, the APL formulation after 24 hours of treatment demonstrated oviposition deterrence against Ae. aegypti (43.6%) and Ae. albopictus (59.6%); inhibited egg hatching of Ae. aegypti (49.6%) and Ae. albopictus (59.6%); caused larval lethality in Ae. aegypti (LC 50 = 9.5 ppm, LC 90 = 21 ppm) and Ae. albopictus (LC 50 = 7.6 ppm, LC 90 = 18 ppm). Under natural field conditions, it showed a 100% reduction in larval density after 48 and 72 hours of the APL treatment at a tested concentration of 120 mg a.i./m 2 and maintained a mortality rate of 100% in the next 14 days.
Conclusions/Significance: The APL formulation is promisingly to become an environmentally friendly and highly effective biological product for future management programs of dengue and Zika-transmitting vectors. Here offer prospects in controlling critical illnesses transmitted by several mosquito species in dengue-endemic areas.