Black pepper ( Piper nigrum L.) is widely grown in the Chu-se district of Gia Lai province in Vietnam. The pepper, used as a spice, also serves as a traditional medicine in many countries. Black pepper contains many different substances; the most active of these is piperine, which exerts anti-oxidant, anti-inflammatory, and anti-cancer effects. However, piperine is a poorly absorbed alkaloid, and high concentrations may be toxic. Therefore, its medicinal uses remain limited. Here, we extracted piperine from black peppers collected at Chu Se, created piperine and anti-CD133 monoclonal antibodies (mAb^CD133) containing nanoliposomal complexes (PMCs), and evaluated their inhibitory effects on cancer stem cells (CSCs) in vitro. The physical properties of PMCs showed an approximated diamater of 170 nm, a PDI of 0.23, zeta potential of −9.38 mV, and an encapsulated efficiency of 73.33 ± 9.09%. The PMCs significantly inhibited NTERA-2 cell growth (IC50 = 435.3 ± 4.3 µM), but were not toxic to healthy cells (IC50 >500 µM). The PMCs remarkably affected the CSC surface marker expressed level of which the CD44+/CD133+ population was only 2.12% compared with 21.72% for blank nanoliposomes. The NTERA-2 antiproliferative activities of PMCs might be associated with their G2 cell cycle phase arresting and caspase-3 inducible activities (up to 1.51 times) ( P < 0.05). The nanoliposomal complex also significantly inhibited the proliferation of NTERA-2 cells in three dimensional tumorspheroids with an IC50 = 245.82 ± 11.44 µM and reduced the size by up to 41.50 ± 4.31% ( P < 0.05). Thus, the PMCs proved their enhanced potential biomedical and pharmacological applications in targeted cancer therapies.
Currently, scientific publications are focusing on the pharmacological actions of Citrus limon's extract and essential oil. Its essential oil is rich in bioactive monoterpenoids, such as D-limonene, β-pinene, γ-terpinene. Citrus limon essential oils have been recognized as the potential source of natural insecticides because of their selectivity, ability to be biologically degraded into non-toxic compounds, low impacts on biodiversity and the environment. Many previous studies have reported anti-bacterial, anti-fungal, anti-inflammatory, anti-cancer, hepato-regenerative, and cardio-protective activities of Citrus limon essential oil. In this study, we collected the discarded Citrus limon peel source in Gia Lai province to utilize as a material to build an optimized extraction process with the following criteria: extraction solvent, solvent/sample ratio, extraction temperature, and extraction time. The results showed a stable extraction process with a maximum extraction efficiency of 4.02%, at 40°C, for 3 hours, with two extraction times using 95% ethanol for solvent. Using GC/MS method, the determined limonene content accounted for 12.2% of the extract. The Citrus limon peel extract exhibited potency against Aedes aegypti (arbovirus vector) at a concentration of 0.01 mL, with protection time of 70 minutes and biting percentage of 0.9%, compared to negative control with statistically significant (P < 0.05). The above results correspond with the most recent publications about the effects of mosquito repellence of certain plant-based essential oils. This study has proven that Citrus limon peel in this locality signifies a promising candidature for future studies regarding its main active compound, limonene, in the control of dengue-transmitting vectors. Therefore, Citrus limon peel extract brings hope to develop new mosquito repellency products in the future.
Anacardic acid (AA) is a natural active ingredient that accounts for 65% of the liquid extract from the shell of the cashew nut. Due to the stronger cytotoxic activity of hydrogenated AA (HAA) against NTERA-2 cancer stem cells (CSCs) than AA itself, HAA was co-conjugated with CD133 monoclonal antibody (mAb^CD133) into nanoliposomal particles (AMC). This nanoliposomal complex is expected to improved HAA activities against CSCs based on the targeting capacity of mAb^CD133 toward CD133, a typical CSCs’ surface marker. AMC was manufactured with a mean size of 100.9 nm, a zeta potential of −40.7 mV, and a PDI of 0.283. We report a 100% encapsulation efficiency of HAA into liposomes and a 90.7% conjugation efficiency with mAb^CD133. The penetration of AMC into NTERA-2 CSCs after 2 h was 83.7%. The AMC complex inhibited NTERA-2 growth with an IC50 (inhibition concentration at 50%) value of 75.83 ± 6.70 µM, showing the targeting ability and lower toxicity (IC50 > 100 µM) on healthy cells. The AMC nanoparticles also demonstrated significant potential apoptotic induction by activating caspase 3 activity by up to 2.57 and 2.06 folds compared to that of the negative control at 20 and 4 µM, respectively. This induction was significant improvement in comparison with that of unconjugated HAA ( P < .05). AMC presented a clear effect on the solid structure of NTERA-2 spheroids and significantly suppressed the proliferation of CSCs in the 3D tumorspheres with an IC50 = 64.25 ± 3.15 µM, compared to the free form with an IC50 = 82.22 ± 0.65 µM ( P < .05). Therefore, this nanoliposomal complex exhibits promising capacities as an effective material against NTERA-2 CSCs.
Rice is one of the most important crops in Asian countries such as China, Vietnam... Many recent reports indicate that the arsenic content in rice exceeds the threshold and affects human health. Studying of molecular mechanisms and finding the arsenic resistance genes in rice which is extremely important and urgent. In this study, we analyzed the transcriptional changes of arsenic-treated rice root cells during 24 hours by microarray technique. Results showed that a large number of the differentially expressed genes (720 genes). EasyGO and Mapman softwares are powerful tools in analyzing microarray data and classifying functional groups as well as the important metabolic pathways in the cell. Results of microarray analysis using EasyGO showed that 74 down-regulated genes related to cellular component, 200 up-regulated genes involved in catalytic activity, 93 up-regulated genes involved in biological processes as responding to environmental stress, and 64 detoxification-realted genes are increased expression such as cytochrome P450, Glutathione-S-transferase and UDP-Glycosyltransferase. Mapman's microarray analysis reaults also indicate that numerous of arsenic-tolerance genes of rice roots. These results support for searching indicated genes in the selection of As-tolerance rice varieties. Keywords Asen, EasyGO, Mapman, microarray, Oryza sativa L. References [1] S.K. Panda, R.K. Upadhyay, S. Nath, Arsenic stress in plants. Journal of Agronomy and Crop Science 196 (2010) 161-174. https://doi.org/10. 1111/j.1439-037X.2009. 00407.x.[2] M.A. Rahman, H. Hasengawa, M.M. Rahman, M.A Miah, A. Tasmin. Arsenic accumulation in rice (Oryza sativa L.): Human exposure through food chain. Ecotoxicology and Environmental Safety 69 (2008): 317-324. https://doi.org/10. 1016/j.ecoenv.2007.01.005.[3] K.A. Marrs, The function and regulation of Glutathione S-transferase in plants. Plant Mol Biol 47 (1996) 127-58. https://doi.org/10.1146/ annurev.arplant.47.1.127.[4] L.M. DelRazo, B. Quintanilla-Vega, E. Brambila-Colombres, E.S. Caldero ́n-Aranda, M. Manno, A. Albores, Stress proteins induced by Arsenic. Toxicology and Applied Pharmacology 177 (2001)132-148. https://doi.org/10.1006/taap. 2001.9291.[5] T.L. Huang, Q.T.T. Nguyen, S.F. Fu, C.Y. Lin, Y.C. Chen, H.J. Huang, Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots. Plant Molecular Biology 80 (2012) 587-608. https://link.springer.com/article/10.10 07/s11103-012-9969-z.[6] O. Thimm, O. Bläsing, Y. Gibon, A. Nagel, S. Meyer, P. Krüger, J. Selbig, L.A. Müller, S.Y Rhee, M. Stitt, Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. The Plant Journal 37 (2004) 914-939. https://doi.org/10.1111/j.1365-313X.2004. 02016.x.[7] J. Hartley-Whitker, G. Ainsworth, A.A. Meharg, Copper- and arsenate-induced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant, Cell and Environment 24 (2001) 713-722. https://doi.org/10.1046/j.0016-8025.2001.00721.x.[8] S. Mishara, A.B. Jha, R.S. Dubey, Arsenite treatment induces oxidative stress, upregulates antioxidant system, and causes phytochelatin synthesis in rice seedlings. Protoplasma 248 (2011) 565-577. https://doi.org/10.1007/s00709-010-0210-0.[9] M. Chabannes, A. Barakate, C. Lapierre, J.M. Marita, Strong decrease in lignin content without significant alteration of plant development is induced by simultaneous down-regulation of cinnamoyl CoA reductase (CCR) and cinnamyl alcohol dehydrogenase (CAD) in tobacco plants, The Plant 28 (2001): 257-270. https://doi.org/10. 1046/j.1365-313X.2001.01140.x.[10] T. Goujon, V. Ferret, I. Mila, B. Pollet, Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217 (2003) 218-228. https://doi.org/10.1007/s00425-003-0987-6.[11] C. Li, S. Feng, Y. Shoa, L. Jiang, X. Lu, X. Hou, Effects of arsenic on seed germination and physiological activities of wheat seedlings. Journal of Environmental Sciences. 19 (2007) 725-732. https://doi.org/10.1016/S1001-0742(07) 60121-1.[12] A.A. Meharg, J. Harley-Whitaker, Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist 154 (2002) 29-43. https://doi.org/10.1046/j.1469-8137.2002.00363.x.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.