NADPH-cytochrome P450 oxidoreductase (CYPOR) catalyzes the transfer of electrons to all known microsomal cytochromes P450. A CYPOR variant, with a 4-amino acid deletion in the hinge connecting the FMN domain to the rest of the protein, has been crystallized in three remarkably extended conformations. The variant donates an electron to cytochrome P450 at the same rate as the wild-type, when provided with sufficient electrons. Nevertheless, it is defective in its ability to transfer electrons intramolecularly from FAD to FMN. The three extended CYPOR structures demonstrate that, by pivoting on the C terminus of the hinge, the FMN domain of the enzyme undergoes a structural rearrangement that separates it from FAD and exposes the FMN, allowing it to interact with its redox partners. A similar movement most likely occurs in the wild-type enzyme in the course of transferring electrons from FAD to its physiological partner, cytochrome P450. A model of the complex between an open conformation of CYPOR and cytochrome P450 is presented that satisfies mutagenesis constraints. Neither lengthening the linker nor mutating its sequence influenced the activity of CYPOR. It is likely that the analogous linker in other members of the diflavin family functions in a similar manner.
NADPH-cytochrome P450 oxidoreductase (CYPOR)4 is a ϳ78-kDa, multidomain, microsomal diflavin protein that shuttles electrons from NADPH 3 FAD 3 FMN to members of the ubiquitous cytochrome P450 superfamily (1, 2). In humans, the cytochromes P450 (cyt P450) are one of the most important families of proteins involved in the biosynthesis and degradation of a vast number of endogenous compounds and the detoxification and biodegradation of most foreign compounds. CYPOR also donates electrons to heme oxygenase (3), cytochrome b 5 (4), and cytochrome c (5).The FAD receives a hydride anion from the obligate two electron donor NADPH and passes the electrons one at a time to FMN. The FMN then donates electrons to the redox partners of CYPOR, again one electron at a time. Cyt P450 accepts electrons at two different steps in its complex reaction cycle. Ferric cyt P450 is reduced to the ferrous protein, and oxyferrous cyt P450 receives the second of the two electrons to form the peroxo (Fe ϩ3 OO) 2Ϫ cyt P450 intermediate (6). In vivo, CYPOR cycles between the one-and three-electron reduced forms (7,8). Although the one-electron reduced form is an air-stable, neutral blue semiquinone (FMN ox/sq , Ϫ110 mV), it is the FMN hydroquinone (FMN sq/hq , Ϫ270 mV), not the semiquinone, that donates an electron to its redox partners (8 -11). CYPOR is the prototype of the mammalian diflavin-containing enzyme family, which includes nitric-oxide synthase (12), methionine synthase reductase (13,14), and a novel reductase expressed in the cytoplasm of certain cancer cells (15). CYPOR is also a target for anticancer therapy, because it reductively activates anticancer prodrugs (16).CYPOR consists of an N-terminal single ␣-helical transmembrane anchor (ϳ6 kDa) responsible for its local...